Agenda

- The GNU Gatekeeper project
- Feature overview
- Deployment Scenarios
- Configuration
- Performance
- The Future
- A Wishlist
How did it all start?

- started in 1999
- version 1.0 released in 2001
 - usable for small production setups
- version 2.0 released in 2002
 - it is being used in many larger installations
- version 2.2 released in October 2004
 - architectural redesign, more scalable
 - new features like routing policies etc.
GnuGk Community

- 2 mailing lists
 - 900 members on the users mailing list
 - 350 members on the developers mailing list
- 8000 downloads / month
- 25000 visits at gnugk.org / month
Feature Overview (1)

- GPL licence
- support for Unix (Linux, Solaris, FreeBSD), MacOS X and Windows
- can be run as a Windows service
- H.323 protocol handling through OpenH323 library
- all regular H.323 gatekeeper features
 - address translation (alias to IP)
 - access control, call authorization, accounting
 - call routing
 - etc.
Feature Overview (2)

- NAT traversal - both outgoing and incoming calls
- authorization and accounting with various backend systems (plain text file, SQL, LDAP, Radius)
- telnet monitor and admin interface
- gatekeeper clustering and failover support
 - child-parent gatekeepers
 - neighbor gatekeepers (interzone communication)
 - alternate gatekeepers
Feature Overview (3)

- support for various versions of H.323 protocol (V1 endpoints, some V4 features)
- H.235 security (authentication) – try GnuGk 2.0.9!
- CTI functions:
 - inbound call routing (“virtual queues”)
 - call transfer
- E.164 number rewriting (call routing)
- configuration changeable at runtime
- Graphical User Interface in Java for monitoring
Operational Modes

- direct signalling mode
- gatekeeper routed signalling mode
- full proxy mode (signalling + RTP media)
Direct Signalling Mode

- only RAS channel between endpoints and the gatekeeper
- signalling directly between endpoints
- very good scalability
- lack of precise call control
Gatekeeper Routed Signalling

- signalling channel is routed through the gatekeeper
- precise call control (authorization, accounting)
- additional services like call transfer
- good balance between performance and flexibility
Full Proxy Mode

- all data (RTP audio, RTP video, T.120 data) is routed through the gatekeeper
- no direct communication between endpoints
- high CPU/bandwidth consumption
- designed to allow firewall/NAT traversal
NAT Traversal (1)

- 5 possible scenarios:
 - endpoint behind NAT, port forwarding enabled
 - (outbound calls only) endpoint behind NAT that knows how to use symmetric RTP UDP, gatekeeper in proxy mode
 - gatekeeper (proxy mode) on a NAT box (with access to both internal and external network interfaces
 - gatekeeper behind a NAT box, registered as a child with a parent GNU Gatekeeper (both have proxy mode enabled), both use internal NAT traversal protocol
 - endpoint behind NAT, knows how to use symmetric RTP/UDP and internal GnuGk NAT traversal protocol
NAT Traversal (2)

A

Gatekeeper (Public IP)

NAT + Port Forwarding

An H.323 endpoint with symmetric RTP/UDP

RAS Signaling Media

B

Gatekeeper (Public IP + Proxy Mode)

NAT (No need for configuration)

RAS Signaling Media

C

Gatekeeper (Private/Public IP + Proxy Mode)

NAT (No need for configuration)

RAS Signaling Media + Internal GnuGk NAT Traversal Protocol

D

Parent GNU Gatekeeper (Public IP + Proxy Mode)

Child GNU Gatekeeper (Private IP + Proxy Mode)

VoIP Network

http://www.gnugk.org
GnuGk Deployment Scenarios

- PBX Replacement
- Prepaid VoIP Telephony
- Call Center
- Call Termination Services
- and much more ...
PBX Replacement

- internal calls within the company
- inter-division calls
- numbering plans
- cheap PSTN calls

Company Division A
GnuGk A

GnuGk B
Company Division B

Gateway

http://www.gnugk.org
Call Center

- ACD application (Automatic Call Distribution)
- calls to a single number are distributed to many agents (eg. hotline)
- various call distribution policies:
 - longest idle
 - first idle
 - round robin
 - TODO: skill based
Prepaid Calling

- call authorization and accounting
- enforcing limit on call duration
- easy integration with Radius and existing billing systems
- can be easily built from open source components only:
 - GnuGk + Radius server + SQL database

IP phones

software phones

gatekeepers

gateways

PS TN
Call Termination Services

- call authorization and accounting (gatekeeper routed signalling mode)
- call routing decisions:
 - route the call to a specific gateways
 - route the call other call termination providers
GnuGk Configuration (1)

- manual in download archive (chapter 3 is a short tutorial)
- all configuration settings are read from a text file
 - [Gatekeeper::Main]
 Fourtytwo=42
 Name=GnuGk

 [RoutedMode]
 GKRouted=1

 [GkStatus::Auth]
 rule=allow

- can reload changed config at runtime
the configuration is divided into sections:
- global parameters
- gatekeeper mode (direct signalling, routed signalling, full proxy)
- neighbor/parent gatekeepers
- routing (E.164 rewrite, gateway prefixes)
- authentication modules
- accounting modules
- virtual queues
Accounting / Billing

- many acct modules
 - flat file (FileAcct)
 - Radius (RadAcct)
 - SQL (SQLAcct: PostgreSQL, MySQL)
 - Telnet interface (limited)

- SQL billing application for PostgreSQL in contrib/ directory
 - started as an example for an OSTS 2004 tutorial, now part of the GnuGk package
 - flexible billing engine
SqlBill (1)

- small but complete core for a billing/tariffing engine
- SqlBill provides
 - endpoint authentication by means of username/password, username/IP or IP only and alias control
 - endpoint/call authorization (allowed destinations, maximum call duration limit, account balance)
 - real-time account/call billing
 - support for prepaid/postpaid, originating/terminating account types
 - flexible tariffing engine
SqlBill (2)

- SqlBill does not provide
 - business logic (invoicing, detailed customer data, payment processing, etc.)
 - user interface (minimalists can use pgAdmin;)

- technical details
 - can work on large databases
 - processes 50 calls / second on an average PC machine
 - communicates through RADIUS or directly with GnuGk
 - interfaces with PHP/.NET/ODBC applications easily
 - extendable to interoperate with other protocols/software
GnuGk Telnet Interface (1)

- the „status port“
- interface for humans and external applications
- interface to non-GPL code
- remote administration
 - configuration changes/reloads
 - gatekeeper statistics (endpoints, total / active calls etc.)
 - manual call disconnect and endpoint unregistration
 - username/password based access authentication
 - call routing (“virtual queues”)
- live CDR output

http://www.gnugk.org
GnuGk Telnet Interface (2)

GkStatus: Version(1.0) Ext()
Toolkit: Version(1.0) Ext(basic)
Startup: Fri, 08 Oct 2004 00:59:03 +0100 Running: 80 days 01:34:23

s

-- Endpoint Statistics --
Cached Endpoints: 1 Terminals: 0 Gateways: 1

-- Call Statistics --
Current Calls: 54 Active: 49 From Neighbor: 12 From Parent: 0
Total Calls: 1946364 Successful: 764238 From Neighbor: 533765 From Parent: 0
Startup: Fri, 08 Oct 2004 00:59:03 +0100 Running: 80 days 01:34:23
Telnet Interface Applications

- Monitoring
 - Java GUI
 - GnuGk PHPStatus
 - OpenIP PBX (outdated)

- Call Routing
 - GnuGk ACD
 - custom routing / LCR applications

- Billing
 - interface to other billing applications
 - use other acct module if you can
Ways to route calls

- Gateway selection (config)
- Destination rewriting (config)
- Virtual queues (external)
- Radius based (external)
- use the new routing policies in 2.2 to configure which of the above are active
Virtual Queues

- no queued calls with announcements etc.
- „external ARQ rewriting“
- Config
 - define list or regexp of destinations to route
- Event
 - RouteRequest
- Commands
 - RouteReject (disconnect call)
 - RouteToAlias (change destination alias)
 - RouteToGateway (change destination alias and destination IP „out-of-zone routing“)
GnuGk Performance

- depends strongly on the gatekeeper mode selected (direct, routed signalling, full proxy)
- few performance statistics/tests (testers wanted!)
- direct and routed modes are able to process a few thousands of simultaneous calls on a typical high-end PC machine
- full proxy mode is designed for small call volumes - a few hundreds of simultaneous calls
- for large volume of calls the Unix version of GnuGk is recommended

http://www.gnugk.org
Performance Optimization (1)

- use LARGE_FDSET=... for large call volumes
 - compiletime config
 - stresses CPU less than OpenH323 socket handling
 - LARGE_FDSET=1024 for <= 100 concurrent calls
 - rule of thumb:
 - max. concurrent calls * 10 + 20%
 - 10 sockets/call: 2 for Q.931 + 2 for H.245 + 6 for RTP etc.
 - usually an OS limit for maximum number of file handles per process needs to be increased (using 'ulimit' command, for example) to match the new LARGE_FDSET value
GnuGk spawns one or more threads (signaling handlers) to handle signaling messages and perform authorization / accounting.

For best call throughput (and max. concurrent calls) tune the `CallSignalHandlerNumber / RtpHandlerNumber` variable:
- Runtime config
- Windows PWLib has default limit of 64 sockets / thread
 - Or recompile PWLib with `FD_SETSIZE=x` macro
- Don't let a single signaling handler to handle too many calls
 - `CallSignalHandlerNumber=ConcurrentCalls/10`
Performance Bottlenecks

- slow accounting/authorization backend (a database without indexes or with inefficient ones, queries not optimized, no RAID disks, RADIUS server runs out of resources, etc...)

- excessive network packet throughput:
 - a single G.723.1 call requires (at most) 70 UDP packets/s to be sent/received (in both directions) from each party:
 - 140 packets/s per call => 45,000 packets/s for 300 concurrent calls
 - add 5% for signaling => ca. 50,000 packet/s for 300 calls
 - Gigabit Ethernet cards can handle high packet rates without triggering too much interrupts to the kernel
GnuGk Future (1)

- **2.0 branch**
 - stable, well tested product
 - only bugfixes will be added
 - LDAP, H.235, MacOS X

- **2.2 branch**
 - current stable version (2.2.0 was released Oct. 2004)
 - config is mainly backward compatible (except for routing policies)
 - redesigned to give much better performance and call routing control
GnuGk Future (2)

- flexible call routing:
 - failover support (multiple destination routes)
 - smart route selection (LCR – Least Cost Routing)
 - multistage E.164 number rewriting

- more advanced gatekeeper clustering
- dialler applications
- development of external applications on top of GnuGk
GnuGk Future (3)

- internationalization of the documentation
 - currently: English, Portuguese
 - comming: French, maybe Spanish
 - slightly outdated: Chinese (new maintainer ?)

- TAPI, JTAPI support
A Wishlist

- please link to gnugk.org so others can find GnuGk
- please send us your
 - feedback
 - config tips for endpoints, gateways etc.
 - success stories
 - tools (big or small)
 - whatever else you have to share with the community
Visit http://www.gnugk.org

Thank you!

http://www.gnugk.org